3.4.98 \(\int \frac {(a+b x^3)^{3/2}}{x^6} \, dx\) [398]

3.4.98.1 Optimal result
3.4.98.2 Mathematica [C] (verified)
3.4.98.3 Rubi [A] (verified)
3.4.98.4 Maple [A] (verified)
3.4.98.5 Fricas [C] (verification not implemented)
3.4.98.6 Sympy [A] (verification not implemented)
3.4.98.7 Maxima [F]
3.4.98.8 Giac [F]
3.4.98.9 Mupad [F(-1)]

3.4.98.1 Optimal result

Integrand size = 15, antiderivative size = 247 \[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=-\frac {9 b \sqrt {a+b x^3}}{20 x^2}-\frac {\left (a+b x^3\right )^{3/2}}{5 x^5}+\frac {9\ 3^{3/4} \sqrt {2+\sqrt {3}} b^{5/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{20 \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

output
-1/5*(b*x^3+a)^(3/2)/x^5-9/20*b*(b*x^3+a)^(1/2)/x^2+9/20*3^(3/4)*b^(5/3)*( 
a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^ 
(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1 
/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)/(b*x^3 
+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^ 
(1/2)
 
3.4.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.21 \[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=-\frac {a \sqrt {a+b x^3} \operatorname {Hypergeometric2F1}\left (-\frac {5}{3},-\frac {3}{2},-\frac {2}{3},-\frac {b x^3}{a}\right )}{5 x^5 \sqrt {1+\frac {b x^3}{a}}} \]

input
Integrate[(a + b*x^3)^(3/2)/x^6,x]
 
output
-1/5*(a*Sqrt[a + b*x^3]*Hypergeometric2F1[-5/3, -3/2, -2/3, -((b*x^3)/a)]) 
/(x^5*Sqrt[1 + (b*x^3)/a])
 
3.4.98.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.02, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {809, 809, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx\)

\(\Big \downarrow \) 809

\(\displaystyle \frac {9}{10} b \int \frac {\sqrt {b x^3+a}}{x^3}dx-\frac {\left (a+b x^3\right )^{3/2}}{5 x^5}\)

\(\Big \downarrow \) 809

\(\displaystyle \frac {9}{10} b \left (\frac {3}{4} b \int \frac {1}{\sqrt {b x^3+a}}dx-\frac {\sqrt {a+b x^3}}{2 x^2}\right )-\frac {\left (a+b x^3\right )^{3/2}}{5 x^5}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {9}{10} b \left (\frac {3^{3/4} \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{2 \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {\sqrt {a+b x^3}}{2 x^2}\right )-\frac {\left (a+b x^3\right )^{3/2}}{5 x^5}\)

input
Int[(a + b*x^3)^(3/2)/x^6,x]
 
output
-1/5*(a + b*x^3)^(3/2)/x^5 + (9*b*(-1/2*Sqrt[a + b*x^3]/x^2 + (3^(3/4)*Sqr 
t[2 + Sqrt[3]]*b^(2/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/ 
3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSi 
n[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)] 
, -7 - 4*Sqrt[3]])/(2*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])* 
a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/10
 

3.4.98.3.1 Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 809
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c* 
x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1))), x] - Simp[b*n*(p/(c^n*(m + 1)))   I 
nt[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && IGtQ 
[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntB 
inomialQ[a, b, c, n, m, p, x]
 
3.4.98.4 Maple [A] (verified)

Time = 3.89 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.24

method result size
risch \(-\frac {\sqrt {b \,x^{3}+a}\, \left (13 b \,x^{3}+4 a \right )}{20 x^{5}}-\frac {9 i b \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{20 \sqrt {b \,x^{3}+a}}\) \(306\)
default \(-\frac {a \sqrt {b \,x^{3}+a}}{5 x^{5}}-\frac {13 b \sqrt {b \,x^{3}+a}}{20 x^{2}}-\frac {9 i b \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{20 \sqrt {b \,x^{3}+a}}\) \(312\)
elliptic \(-\frac {a \sqrt {b \,x^{3}+a}}{5 x^{5}}-\frac {13 b \sqrt {b \,x^{3}+a}}{20 x^{2}}-\frac {9 i b \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{20 \sqrt {b \,x^{3}+a}}\) \(312\)

input
int((b*x^3+a)^(3/2)/x^6,x,method=_RETURNVERBOSE)
 
output
-1/20*(b*x^3+a)^(1/2)*(13*b*x^3+4*a)/x^5-9/20*I*b*3^(1/2)*(-a*b^2)^(1/3)*( 
I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^ 
2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/ 
2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(- 
a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/ 
3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/ 
2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1 
/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 
3.4.98.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.18 \[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=\frac {27 \, b^{\frac {3}{2}} x^{5} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - {\left (13 \, b x^{3} + 4 \, a\right )} \sqrt {b x^{3} + a}}{20 \, x^{5}} \]

input
integrate((b*x^3+a)^(3/2)/x^6,x, algorithm="fricas")
 
output
1/20*(27*b^(3/2)*x^5*weierstrassPInverse(0, -4*a/b, x) - (13*b*x^3 + 4*a)* 
sqrt(b*x^3 + a))/x^5
 
3.4.98.6 Sympy [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.19 \[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=\frac {a^{\frac {3}{2}} \Gamma \left (- \frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{3}, - \frac {3}{2} \\ - \frac {2}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 x^{5} \Gamma \left (- \frac {2}{3}\right )} \]

input
integrate((b*x**3+a)**(3/2)/x**6,x)
 
output
a**(3/2)*gamma(-5/3)*hyper((-5/3, -3/2), (-2/3,), b*x**3*exp_polar(I*pi)/a 
)/(3*x**5*gamma(-2/3))
 
3.4.98.7 Maxima [F]

\[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=\int { \frac {{\left (b x^{3} + a\right )}^{\frac {3}{2}}}{x^{6}} \,d x } \]

input
integrate((b*x^3+a)^(3/2)/x^6,x, algorithm="maxima")
 
output
integrate((b*x^3 + a)^(3/2)/x^6, x)
 
3.4.98.8 Giac [F]

\[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=\int { \frac {{\left (b x^{3} + a\right )}^{\frac {3}{2}}}{x^{6}} \,d x } \]

input
integrate((b*x^3+a)^(3/2)/x^6,x, algorithm="giac")
 
output
integrate((b*x^3 + a)^(3/2)/x^6, x)
 
3.4.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^3\right )^{3/2}}{x^6} \, dx=\int \frac {{\left (b\,x^3+a\right )}^{3/2}}{x^6} \,d x \]

input
int((a + b*x^3)^(3/2)/x^6,x)
 
output
int((a + b*x^3)^(3/2)/x^6, x)